The smallest black hole that makes sense ($D \geq D_c$) has a mass $m_p = \text{Planck mass} = \frac{\sqrt{hc}}{G} = 5.5 \times 10^{-8} \text{ kg}$

Let $D = 2c$, solve for m_p:

The corresponding size (smallest universe state we can make sense of) has $\lambda_p = \frac{\sqrt{Gh}}{c^3} = \text{Planck length} = 4.2 \times 10^{-35} \text{ m}$

Earliest time we can make sense of: $t_p = \frac{\pi}{c} \frac{\sqrt{Gh}}{c^3}
\approx 10^{-43} \text{ s}$